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ABSTRACT

Storyline visualization is a technique that captures the spatio-
temporal characteristics of individual entities and simultaneously
illustrates emerging group behaviors. We developed a storyline vi-
sualization leveraging dynamic time warping to parse and cluster
eye tracking sequences. Visualization of the results captures the
similarities and differences across a group of observers performing
a common task. We applied our storyline approach to gaze patterns
of people watching dynamic movie clips. We use these to illustrate
variations in the spatio-temporal patterns of observers as captured
by different data encoding techniques. We illustrate that storylines
further aid in the identification of modal patterns and noteworthy
individual differences within a corpus of eye tracking data.

Keywords: eye tracking, dynamic time warping, storyline visual-
ization, layout algorithm, video stimuli

Index Terms: I.3.8 [Computing Methodologies]: COMPUTER
GRAPHICS—Applications; G.3 [Mathematics of computing]:
Probability and statistics—Time series analysis

1 INTRODUCTION

Dynamic stimuli and task environments challenge the limits of
current eye tracking analytic techniques. When watching moving
scenes or movies, people show broad individual differences in their
eye movement responses to visual events and dynamic content. If
people are also moving or interacting with visual information (e.g.,
in situ grocery shopping), then the sequences of their own behav-
iors will further complicate interpretation of the visual events and
eye movement patterns. We need visualization tools that enable the
identification of individual and group patterns as well as meaning-
ful techniques for aligning variable spatio-temporal characteristics
of scanpaths for direct comparison. This will enable researchers to
identify observer subgroups utilizing common task strategies and to
find events or stimulus characteristics that trigger common or devi-
ating gaze patterns among the observers. We propose that storyline
visualization effectively supports these tasks.

It is often claimed, and sometimes tested [10], that people tend to
look at the same portion of the screen when watching video clips or
sequences. Evaluations of such claims have entailed spatial analysis
of fixation positions at selected moments in time with observer data
collapsed into a distribution of positions; when a majority of the
distribution fall into a common area of interest (AOI), researchers
claim people are looking at the same place. Indeed, this assumption
is critical to many video compression and enhancement techniques
which emphasize the AOI to which a majority of observers attended
[10, 27]. There is strong evidence that many common fixation pat-
terns are driven by visual salience and factors that attract exogenous
attention [12, 13, 14, 27], which can be leveraged for video process-
ing targeting mean or modal observer behavior.
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But do people look at the same places at the same time or in
the same sequence? Analytics leveraging spatial aggregation pro-
vide only minimal insight into the dynamic sequences of viewing
events that constitute the total task behaviors. In video viewing, ob-
servers may take different strategies when multiple highly salient
objects are in their fields of view. Viewer age, gender, prior ex-
perience, and content expectations all shape gaze patterns [10].
Consequently, the one-AOI-fits-all assumption of video compres-
sion/enhancement techniques will be less successful for the por-
tion of observers deviating from the mean or modal scanpaths. Be-
haviors that should be treated as a different cognitive task strat-
egy would be treated as noise and potentially discarded altogether.
We hypothesize that storyline visualization, together with the ap-
propriate analytics, is well suited to enable the characterization of
spatio-temporal eye gaze patterns. They provide a view of individ-
ual observers together with aggregations across observers, aiding
the identification of behavioral commonalities in both the space and
time dimensions. In this paper, we use dynamic time warping and
storyline visualization to accomplish two objectives: (1) demon-
strate an analytics pipeline for processing time series data and opti-
mizing storyline layout for eye tracking data, and (2) illustrate the
effect that data encoding method has on the resultant visualization.

1.1 Related Work
Eye tracking visualizations for dynamic viewing can be classified
as temporal, spatial, or spatio-temporal, depending on whether the
time dimension is explicitly represented [1]. Temporal plots explic-
itly represent time as one of the visualization dimensions. Often
these collapse the spatial dimension into AOI labels, illustrating
dwell time within each AOI and transitions between them. De-
tailed spatial position information is lost, as in scarf plots [18, 31]
and AOI timelines [5]. Spatial visualizations, such as attention
maps [4], saccade plots [6], and transition diagrams [3], use a two-
dimensional plot or image overlay to capture the two-dimensional
position of the eyes. Transitions between AOIs or fixations may be
explicitly represented with lines between points, but the temporal
information about the scanpath is lost. For our interest in gaze se-
quences, we seek techniques that capture both spatial and temporal
information. Space-time cubes [19, 20] and similar spatio-temporal
visualizations attempted to capture this information in 3-D plots.
But these suffer from interpretability challenges when rendered on
2-D displays and are prone to clutter and overplotting when indi-
vidual participant data are combined into a single visualization.

Storyline visualization shows how entities interact over space
and time [17, 21, 26, 30, 33]. Storyline visualizations encode time
on the horizontal axis and interactions on the vertical axis. When
two entities are interacting, their storylines are drawn close to-
gether; otherwise, they are drawn apart. Interactions are defined
as entities having the same state at the same time. Some visual-
izations of eye tracking data are reminiscent of storyline visualiza-
tions. Grindinger et al. [11] plotted the y-coordinate of the gaze
point as a function of time. Löwe et al. [22] used multidimensional
scaling to project multiple users’ fields of view into one dimen-
sion, to be plotted against time. Raiha et al. [28] and Raschke et
al. [29] plotted AOIs versus time for multiple users. These visual-
izations could benefit from storyline layout optimizations to reduce
artifacts, such as line crossings, that result from arbitrary line place-
ment. However, similar to storyline visualizations, these techniques
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are less effective on long time series or suffer overplotting of data
recorded at a high sampling rate.

Transformations on raw eye tracking data are used to reduce vi-
sual clutter and increase the effectiveness of time-interaction visual-
izations. Example transformation approaches include aggregating
raw eye coordinates over frames with a Gaussian Mixture Model
[24], spatial and semantic hierarchical visualizations [2], and Mov-
ing Clusters aggregation over time windows [15]. Thompson and
Torabi [34] demonstrated the latter technique on static image eye
tracking data, but they found the ability to maintain consistent clus-
ters degraded over time. All these techniques are constrained by the
number of observers that can be displayed at a given time. We note
that many such transformation techniques aggregate the observers,
rendering it difficult to examine individual behavior over time.

2 THE STORYLINE APPROACH

We present a novel application of storyline visualization and dy-
namic time warping to eye tracking data. Additionally, we devel-
oped a new storyline visualization design and layout algorithm to
support this specific analysis approach. Rather than focusing on
showing raw (x,y) coordinates or AOIs, we show how users’ eye
gaze patterns change over time. We define a pattern as time se-
quence of eye movements. We use storyline visualization to con-
vey which users’ patterns are very similar within each time window.
Our approach can be divided into analytic and visualization stages.
In the analytic stage, the interactions between users’ patterns are
found, using the process described in Section 2.1. In the visualiza-
tion stage, the layout of the storylines is optimized to improve the
usability and aesthetic quality of the drawing. A visual representa-
tion of our approach can be seen in Figure 1.

2.1 Eye Gaze Time-series Dynamic Time Warping
Our analytics stage transforms raw eye gaze data into behavior-
labeled windows across users. This is accomplished by the fol-
lowing four steps, illustrated in Figure 1.

1. Clean data by retaining fixation and saccade samples, remov-
ing eye blinks and recording errors.

2. Divide time series into time windows.
3. Measure warped spatio-temporal distance across all

(observer,window) pairs.
4. Cluster the distance matrix to group similar eye gaze patterns.

In the first step, we represent each fixation or saccade by an (x,y)
coordinate or AOI label, with the choice being a parameter chosen
by an analyst. We note that this step may leverage AOI labels or
event flags generated by eye tracking software associated with spe-
cific hardware; it can also use the fixation/AOI label output from

Figure 1: Eye Gaze Time-series Analytics Pipeline. (a) Start with
raw gaze data, and (b) omit non-fixation or non-saccade data point
(x,y) coordinates or AOIs, and segment time series by time win-
dows. (c) Calculate a warped distance between all pairs of fixation
sequences across time windows and entities, and (d) collect these
pairwise distances into a square distance matrix. (e) Assign cluster
labels to each entity at each time window such that sequences with
similar fixation patterns belong to the the same cluster.

a number of fixation identification algorithms [32]. Eye tracking
software may also give error event flags (e.g., blinks), which we
remove before processing. If AOI labels are used, we include an
additional “outlier” label for any point outside the pre-determined,
semantically interesting AOIs. This is so all points have a label for
our analysis. Depending on the analytic goals, these outliers may
also be removed. Data labeling and cleaning greatly reduces the the
quantity of data to be processed, and the data is now represented
as a sequence of coordinates or labels instead of as an evenly sam-
pled time series. In the second step we choose a meaningful time
window length by which we coarsen the data. The selection of the
window parameter is data/experiment dependent. It should be cho-
sen by the analyst to capture relevant behaviors at the appropriate
scale (or multiple values chosen for meaningful comparisons).

Step three is to measure the distance across all (es
i ,e

t
j) pairs, for

time windows s, t and observers i, j, where es
i is the fixation se-

quence for observer i during time window s. Measuring distance
between arbitrary sequences is non-trivial. We rely on dynamic
time warping (DTW; [25]) to provide meaningful distances, even
when participants exhibit variations in the timing of their fixations.
DTW creates a transformation between two time signals, and pro-
vides a distance cost for the transformation. For AOI sequences, our
underlying distance metric is Hamming distance, which provides a
generalized edit distance between the sequences of AOI labels. For
(x,y) coordinates we use Euclidean distance for the total cost be-
tween two 2-D signals. This produces a distance matrix between
all observer pairs at each time window over the entire time series.

We input this distance matrix into an off-the-shelf clustering al-
gorithm to find sub-groups. We chose the k-medoids clustering al-
gorithm [16] because it is an intuitive variant of k-means that op-
erates directly on the distance matrix (instead of a feature matrix,
which is not available in this case). The clustering algorithm assigns
a label to each (observer,window) pair. If two (observer,window)
pairs have the same label, they can be assumed to have similar
spatio-temporal patterns within this time window. In the storyline
visualization, they will be drawn close together.

A key benefit of this approach is that it allows for the visual com-
plexity (i.e., the number of visual elements represented) to depend
only on the number of time windows and observers. This approach
scales up because the visualization is independent of the temporal
frequency that the underlying eye gaze data was captured. Figure 1
illustrates this complete parsing process.

2.2 Storyline Visualization Algorithm

We use storyline visualization to show, at a coarse level, how eye
gaze patterns change over time across a set of observers viewing
identical movie clips. However, determining the vertical placement
of each entity over time in a way that produces usable visualiza-
tions is a challenging problem, with many different designs and
algorithms proposed in the visualization literature. Pilot usability
studies conducted within our organization suggest that analysts pre-
fer storyline visualizations where the vertical dimension has a con-
sistent meaning over time. Therefore, our storyline visualization
builds on the design proposed by Reda et al. [30] where clusters,
which are sequences of similar fixation patterns, are assigned to dif-
ferent vertical layers. With this design constraint, we implemented
a custom storyline layout algorithm that re-arranged the cluster lay-
ers and storylines to decrease the number of line crossings in the vi-
sualization. This is intended to improve the usability and aesthetic
quality of the visualization.

Our storyline layout optimization has two stages: (1) determine
a good ordering of the clusters, and (2) determine a good ordering
of the storylines. We refer to this ordering as “good” because it
decreases the number of crossings from an arbitrary starting state.
However, it does not guarantee that the number of crossings is min-
imum (i.e., cannot be improved). In the first stage, we build a clus-
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ter graph Gc = (Vc,Ec) that models the transitions between clus-
ters. The weight of an edge (u,v) ∈ Ec is the number of times
any observer is exhibiting pattern/cluster u at time t and then pat-
tern/cluster v at time t + 1. Starting from an arbitrary initial per-
mutation π0 of Vc, we iteratively improve this ordering using the
barycenter heuristic [8, 23], which is likely to put edges with larger
weights closer together in πi after the ith iteration.

In the next step, we compute an ordering of the storylines that
is dependent on the ordering of clusters found in the previous step.
We construct a directed preference graph Gp = (Vp,Ep) that mod-
els the preference for one storyline to be above or below another
storyline. We consider all pairs of storylines (u,v) belonging to a
given cluster c at time t. If u’s cluster is above v’s cluster at time
t−1 and t +1, then we say that u prefers to be above v. A directed
edge (u,v) remains in Ep if the total preference of u over v is greater
than 0 considering all time windows. Finding the feedback arc set
(FAS) of Gp leads directly to an ordering of Vp that best respects
the pairwise preferences of the storylines. While finding the FAS is
NP-Complete, we rely on a fast approximation algorithm that leads
to satisfactory results [7]. We sort storylines within the same time
window and cluster according to the FAS order to determine their
actual vertical positions.

3 APPLICATION

We demonstrate our storyline approach on gaze data recorded dur-
ing passive viewing of two videos. We used publicly available data-
sets from the DIEM Project [24]. These data sets contain (x,y) co-
ordinates, pupil dilation, and event flags (fixation, saccade, blink,
etc.) recorded at 30 frames per second. The goal of our applica-
tion is to show examples of the individual and sub-group patterns
highlighted by the storyline approach. We also illustrate how algo-
rithmic choices influence the resulting storylines.

In the storyline visualizations, time is on the horizontal dimen-
sion, with the points demarcating the sample times from the coars-
ening process. For this demonstration, the gaze data was coarsened
to 2.5 second intervals. The colored groups are the k-medoids clus-
ters. Each curve running between the clusters represents a single
observer’s data. Curves within a cluster are people exhibiting sim-
ilar spatio-temporal patterns in that window. More lines cluster-
ing together in a time window indicate that something is occurring,
externally or cognitively, that triggered a common behavior in all
those observers. Splits of the storylines between clusters indicate
that subgroups of people are exhibiting different gaze behaviors in
that time window. Each curve shifting between clusters indicates a
person changing his/her spatio-temporal pattern.

3.1 The Simpsons Dataset

To illustrate the storyline differences based on data encoding, we
examined viewing behavior of the opening credits from the TV
show “The Simpsons.” This video sequence uses camera move-
ment to guide observers. Often there is a central focal item in the
camera view, which the camera follows. This central object is sur-
rounded by other events and salient moving objects. Camera scene
cuts re-focus the observers to new focal objects. Figure 2 illustrates
the resulting storylines, with two versions showing how the choice
of data type affects cluster assignments. In Figure 2a, the raw (x,y)
coordinates are used to inform the clustering. Figure 2b leverages
AOI labels. We generate AOI labels using DBSCAN [9] on all (x,y)
coordinates, treating each coordinate independently.

The choice to use the raw gaze coordinates or AOI labels deter-
mines the distance metric used with DTW, and therefore affects the
overall clustering shown. Specifically the use of AOI labels in Fig-
ure 2b produced storylines with two dominant clusters across the
time series. In comparison, raw (x,y) coordinate storylines in Fig-
ure 2a show observers more evenly spread between five clusters. In

(a) Storylines from (x,y)-coordinate Labels

(b) Storylines from AOI Labels

Figure 2: Two storyline visualizations of eye gaze patterns during
the “The Simpsons” opening credits. (a) Storylines from raw (x,y)
coordinates. (b) Storylines computed from AOI label time series.
See text for element descriptions. Note the timestamps in seconds
are relative to 0:00 time from the start of the video, arbitrarily la-
beled here as 4pm.

order to understand where which AOIs are captured in these clus-
ters, we must look at the data, potentially overlaying the AOIs on
the video itself. Returning to the data, the dominant AOI clusters
almost exclusively contain the outlier label, meaning that observers
in these clusters are consistently looking at part of the video that
was not previously considered semantically interesting. One impli-
cation is that the AOI labeling may be incomplete. As we used a
large threshold for the minimum number of points to create an AOI
label, we recognize that changing the parameter should affect the
AOI labels and identify fewer points as outliers.

Storyline visualization also quickly shows the distribution of ob-
servers between different spatio-temporal patterns. Times when al-
most all participants follow the same behavior appear as a single
dominant cluster, as in Figure 2a at 0:22.5 s and Figure 2b at 1:07.5
s. Times when participants are distributed between several patterns
appear as more evenly spread across multiple clusters, such as Fig-
ure 2b at 0:40.0 s. The current storyline does not display which
(x,y) coordinates or AOI labels constitute the clusters, as the DTW
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process combine spatial and time data instead of individual location
points. However, storylines do highlight that these time windows
should be targeted for deeper analysis.

3.2 Fifty Person Questionnaire–Brooklyn Dataset
We also applied the storyline approach to the “Fifty Person
Questionnaire–Brooklyn” video. In contrast to the motion-laden
“The Simpsons” video, this video uses a static camera view with
either one or two people speaking to the camera. The close-up view
often obscures any background activity or objects. The speaker
may be left/right/center within the scene. Scene cuts switch be-
tween speakers over the course of the film. The storyline result can
be seen in Figure 3. In each time window, this dataset displays a
strong dominant cluster, which changes over time.

We selected two time windows to dig deeper into the differences
between clusters, seen in Figure 3. Both selected time windows
have a single dominant cluster, with only a few participants ex-
hibiting different gaze behaviors. One observer (bolded curves in
Figure 3a) is in a very sparse grouping for both selected time win-
dows. As storylines only show affinity between participants, we can
only know that the DTW process isolated this observer as showing
a divergent gaze pattern. To understand the differences, we leverage
additional visualizations of key time windows. The average screen-
shots for each time window, below the storyline, show the (x,y) fix-
ation coordinates for all participants; we can locate the outlier ob-
server’s colors (Left: brown; Right: red) to see that s/he is fixating
on points outside the main clusters. Figures 3b and 3c show the x
position over the selected time windows, with our observer of inter-
est boxed. In Figure 3b, the observer shows a left-ward movement
with long fixations; in Figure 3c, the observer shows fixations that
deviate from the patterns of the other observers. By combining the
storyline with additional visualizations, the storyline facilitates the
finding of interesting movement patterns within a set of observers,
potentially indicating behavioral outliers, for a given time window.

4 CONCLUSION

Storyline visualization leveraging DTW is a promising approach
enabling the visualization of multiple observers’ behaviors when
viewing dynamic stimuli. One appeal of this approach is that a con-
sistent visualization technique may be applied to any means of ex-
tracting AOI labels, as long as the DTW distance metric is adapted
appropriately. As summarized by Salvucci and Golberg [32], fixa-
tion identification techniques vary in their use of spatial or tempo-
ral data characteristics. According to their taxonomy, each offers
trade-offs in implementation difficulty, accuracy, and robustness.
Leveraging storylines, all techniques, as well as parametric vari-
ations, may be captured in a common visualization technique for
direct side-by-side comparison in terms of the spatio-temporal pat-
terns present in the extracted fixation sequences. Novel techniques
may further be added to this common visual language and directly
compared to standard techniques such that qualitative differences
in approaches will be immediately apparent.

Storyline visualizations show whether eye tracking observers are
following the same or similar gaze patterns during a given time
window. They allow analysts to quickly determine if participants
are deviating from the modal behavior patterns. However, the dif-
ference in the patterns cannot be determined by storyline visual-
izations alone. In the application in Figure 3, we leveraged ad-
ditional plots to examine detailed spatio-temporal characteristics
within time windows of interest from the storyline. Storyline vi-
sualizations comprise a strong foundation for a powerful tool suite
for dynamic viewing eye tracking data.

Beyond passively viewing movies, the analysis of eye tracking
data in dynamic tasks offers additional challenges with which sto-
rylines may be able to assist. Dynamic tasks may include random
(sequences of) events to which an observer must respond. People

(a) Storylines from (x,y) coordinate labels

(b) x position, 0:15 s time window (c) x position, 0:37.5 s time window

Figure 3: (a) Storyline visualizations processed using the (x,y) co-
ordinates time series for “Fifty Person Questionnaire–Brooklyn”
dataset. Below the storyline is the averaged images for two selected
time windows (indicated with arrows). Fixations are overlaid on
the images in colors that correspond with the cluster membership
for each point. (b-c) The horizontal eye movements against time
of all participants for each 2.5 s time window, centered at the indi-
cated time stamp. The color of each participant corresponds to the
storyline cluster in the given window, and participants of the same
cluster are shown in the same plot.

may adopt different strategies, which may be classified according to
their performance storylines. Shifts in strategy, or changes due to
training/experience, may be tracked as individuals shift their story-
line membership. Further, storylines offer a visualization approach
to identifying subsequences of dynamic events that prompt similar
behaviors among observers.
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