
Design Alternatives for Storyline Visualization of Multivariate Time Series
Dustin Arendt (Visual Analytics, National Security Directorate)

Manifold learning techniques are used to project high dimensional data 
into lower dimensional spaces. Points that are close in the original space 
should also be close in the lower dimensional space. Often data is 
projected into 2 dimensions so it can be visualized (a). The storyline layout 
can be found by projecting the time series data into a 1-D space (b) and 
then plotting that against time (c). 

Instead of letting it fall to chance, we can explicitly arrange the 
visualization to reduce line crossings and wiggles that would otherwise 
make the visualization difficult to read. We use a multi-stage optimization 
algorithm to accomplish this. In the first stage, the order of the groups is 
optimized, then, respecting this order, edges are aligned (shown as red 
lines below). Solving a linear program based on the previous constraints 
determines the y-coordinate of the storylines.

(a) 2-D (b) 1-D (c) 1-D vs. time (a) Group flow (b) Ordered flow (a) Group flow graph

Alternative 1: Projected Alternative 2: Layered Alternative 3: Optimized

Easy to implement
Distance between lines may be meaningful

Over plotting (moderate)
Potentially too much noise

Easy to implement
Position of line (and deviation) is meaningful/consistent

Over plotting (severe)

Minimal over plotting
Aesthetically pleasing

Difficult to implement
Line deviation might not be meaningful, causing confusion

Storyline Visualization
Patterns, relationships, and anomalies in time-varying data are revealed through 
exploratory visual analytics using storylines. Each entity is represented as a line, and 
time is encoded on the horizontal axis. When entities are similar at a given time point, 
their storylines come together, otherwise they are drawn apart. This poster explores 
some alternative algorithms for determining the y-coordinate of the storylines.

Alternatively, if storylines are grouped using a clustering algorithm, we 
could uniquely assign y-coordinates to clusters. Doing so randomly would 
create unnecessary line crossings. We should assign layers in a way that 
reveals frequent transitions between groups. To do this, we compute the 
group flow graph (a) independent of time, and then find the spectral 
ordering of the nodes in this graph (b). This causes strongly connected 
nodes to be closer together.


	Slide Number 1

